3.3.35 \(\int \frac {(a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x))}{\sec ^{\frac {3}{2}}(c+d x)} \, dx\) [235]

Optimal. Leaf size=125 \[ \frac {2 a^{3/2} B \sinh ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}+\frac {2 a^2 (4 A+3 B) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 d \sqrt {a+a \sec (c+d x)}}+\frac {2 a A \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}} \]

[Out]

2*a^(3/2)*B*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/d+2/3*a^2*(4*A+3*B)*sin(d*x+c)*sec(d*x+c)^(1/2)
/d/(a+a*sec(d*x+c))^(1/2)+2/3*a*A*sin(d*x+c)*(a+a*sec(d*x+c))^(1/2)/d/sec(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.20, antiderivative size = 125, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.114, Rules used = {4102, 4100, 3886, 221} \begin {gather*} \frac {2 a^{3/2} B \sinh ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}+\frac {2 a^2 (4 A+3 B) \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d \sqrt {a \sec (c+d x)+a}}+\frac {2 a A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d \sqrt {\sec (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((a + a*Sec[c + d*x])^(3/2)*(A + B*Sec[c + d*x]))/Sec[c + d*x]^(3/2),x]

[Out]

(2*a^(3/2)*B*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/d + (2*a^2*(4*A + 3*B)*Sqrt[Sec[c + d*x
]]*Sin[c + d*x])/(3*d*Sqrt[a + a*Sec[c + d*x]]) + (2*a*A*Sqrt[a + a*Sec[c + d*x]]*Sin[c + d*x])/(3*d*Sqrt[Sec[
c + d*x]])

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt[a])]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rule 3886

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*(a/(b
*f))*Sqrt[a*(d/b)], Subst[Int[1/Sqrt[1 + x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; Free
Q[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]

Rule 4100

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(
B_.) + (A_)), x_Symbol] :> Simp[A*b^2*Cot[e + f*x]*((d*Csc[e + f*x])^n/(a*f*n*Sqrt[a + b*Csc[e + f*x]])), x] +
 Dist[(A*b*(2*n + 1) + 2*a*B*n)/(2*a*d*n), Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^(n + 1), x], x] /; Fr
eeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] &&
LtQ[n, 0]

Rule 4102

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[a*A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*((d*Csc[e + f*x])^n/(f*n)), x]
- Dist[b/(a*d*n), Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*(m - n - 1) - b*B*n - (a*
B*n + A*b*(m + n))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2
 - b^2, 0] && GtQ[m, 1/2] && LtQ[n, -1]

Rubi steps

\begin {align*} \int \frac {(a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x))}{\sec ^{\frac {3}{2}}(c+d x)} \, dx &=\frac {2 a A \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {2}{3} \int \frac {\sqrt {a+a \sec (c+d x)} \left (\frac {1}{2} a (4 A+3 B)+\frac {3}{2} a B \sec (c+d x)\right )}{\sqrt {\sec (c+d x)}} \, dx\\ &=\frac {2 a^2 (4 A+3 B) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 d \sqrt {a+a \sec (c+d x)}}+\frac {2 a A \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+(a B) \int \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)} \, dx\\ &=\frac {2 a^2 (4 A+3 B) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 d \sqrt {a+a \sec (c+d x)}}+\frac {2 a A \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}-\frac {(2 a B) \text {Subst}\left (\int \frac {1}{\sqrt {1+\frac {x^2}{a}}} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}\\ &=\frac {2 a^{3/2} B \sinh ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}+\frac {2 a^2 (4 A+3 B) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 d \sqrt {a+a \sec (c+d x)}}+\frac {2 a A \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.63, size = 109, normalized size = 0.87 \begin {gather*} \frac {2 a^2 \left ((5 A+3 B+A \cos (c+d x)) \sqrt {1-\sec (c+d x)}+3 B \text {ArcSin}\left (\sqrt {1-\sec (c+d x)}\right ) \sqrt {\sec (c+d x)}\right ) \tan (c+d x)}{3 d \sqrt {-((-1+\sec (c+d x)) \sec (c+d x))} \sqrt {a (1+\sec (c+d x))}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((a + a*Sec[c + d*x])^(3/2)*(A + B*Sec[c + d*x]))/Sec[c + d*x]^(3/2),x]

[Out]

(2*a^2*((5*A + 3*B + A*Cos[c + d*x])*Sqrt[1 - Sec[c + d*x]] + 3*B*ArcSin[Sqrt[1 - Sec[c + d*x]]]*Sqrt[Sec[c +
d*x]])*Tan[c + d*x])/(3*d*Sqrt[-((-1 + Sec[c + d*x])*Sec[c + d*x])]*Sqrt[a*(1 + Sec[c + d*x])])

________________________________________________________________________________________

Maple [A]
time = 7.28, size = 211, normalized size = 1.69

method result size
default \(-\frac {\sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \left (3 B \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (1+\cos \left (d x +c \right )+\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right ) \sqrt {2}\, \sin \left (d x +c \right )+3 B \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (-1-\cos \left (d x +c \right )+\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right ) \sqrt {2}\, \sin \left (d x +c \right )+4 A \left (\cos ^{2}\left (d x +c \right )\right )+16 A \cos \left (d x +c \right )+12 B \cos \left (d x +c \right )-20 A -12 B \right ) \left (\cos ^{2}\left (d x +c \right )\right ) \left (\frac {1}{\cos \left (d x +c \right )}\right )^{\frac {3}{2}} a}{6 d \sin \left (d x +c \right )}\) \(211\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c))/sec(d*x+c)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/6/d*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)*(3*B*(-2/(1+cos(d*x+c)))^(1/2)*arctan(1/4*(-2/(1+cos(d*x+c)))^(1/2)
*(1+cos(d*x+c)+sin(d*x+c))*2^(1/2))*2^(1/2)*sin(d*x+c)+3*B*(-2/(1+cos(d*x+c)))^(1/2)*arctan(1/4*(-2/(1+cos(d*x
+c)))^(1/2)*(-1-cos(d*x+c)+sin(d*x+c))*2^(1/2))*2^(1/2)*sin(d*x+c)+4*A*cos(d*x+c)^2+16*A*cos(d*x+c)+12*B*cos(d
*x+c)-20*A-12*B)*cos(d*x+c)^2*(1/cos(d*x+c))^(3/2)/sin(d*x+c)*a

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 314 vs. \(2 (107) = 214\).
time = 0.62, size = 314, normalized size = 2.51 \begin {gather*} \frac {3 \, \sqrt {2} {\left (\sqrt {2} a \log \left (2 \, \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, \sqrt {2} \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2 \, \sqrt {2} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2\right ) - \sqrt {2} a \log \left (2 \, \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, \sqrt {2} \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 2 \, \sqrt {2} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2\right ) + \sqrt {2} a \log \left (2 \, \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 2 \, \sqrt {2} \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2 \, \sqrt {2} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2\right ) - \sqrt {2} a \log \left (2 \, \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 2 \, \sqrt {2} \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 2 \, \sqrt {2} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2\right ) + 8 \, a \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} B \sqrt {a} + 4 \, {\left (\sqrt {2} a \sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ) + 9 \, \sqrt {2} a \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} A \sqrt {a}}{12 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c))/sec(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

1/12*(3*sqrt(2)*(sqrt(2)*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1
/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - sqrt(2)*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^
2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + sqrt(2)*a*log(2*cos(1/2*d*x + 1/2*c
)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - sqrt(2
)*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1
/2*d*x + 1/2*c) + 2) + 8*a*sin(1/2*d*x + 1/2*c))*B*sqrt(a) + 4*(sqrt(2)*a*sin(3/2*d*x + 3/2*c) + 9*sqrt(2)*a*s
in(1/2*d*x + 1/2*c))*A*sqrt(a))/d

________________________________________________________________________________________

Fricas [A]
time = 2.16, size = 368, normalized size = 2.94 \begin {gather*} \left [\frac {3 \, {\left (B a \cos \left (d x + c\right ) + B a\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - \frac {4 \, {\left (\cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right )\right )} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + \frac {4 \, {\left (A a \cos \left (d x + c\right )^{2} + {\left (5 \, A + 3 \, B\right )} a \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{6 \, {\left (d \cos \left (d x + c\right ) + d\right )}}, \frac {3 \, {\left (B a \cos \left (d x + c\right ) + B a\right )} \sqrt {-a} \arctan \left (\frac {2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} - a \cos \left (d x + c\right ) - 2 \, a}\right ) + \frac {2 \, {\left (A a \cos \left (d x + c\right )^{2} + {\left (5 \, A + 3 \, B\right )} a \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{3 \, {\left (d \cos \left (d x + c\right ) + d\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c))/sec(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

[1/6*(3*(B*a*cos(d*x + c) + B*a)*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 - 4*(cos(d*x + c)^2 - 2*co
s(d*x + c))*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)) + 8*a)/(cos(d*x +
c)^3 + cos(d*x + c)^2)) + 4*(A*a*cos(d*x + c)^2 + (5*A + 3*B)*a*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*
x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(d*cos(d*x + c) + d), 1/3*(3*(B*a*cos(d*x + c) + B*a)*sqrt(-a)*arctan
(2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos(d*x + c)^2 - a*cos(
d*x + c) - 2*a)) + 2*(A*a*cos(d*x + c)^2 + (5*A + 3*B)*a*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))
*sin(d*x + c)/sqrt(cos(d*x + c)))/(d*cos(d*x + c) + d)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}} \left (A + B \sec {\left (c + d x \right )}\right )}{\sec ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))**(3/2)*(A+B*sec(d*x+c))/sec(d*x+c)**(3/2),x)

[Out]

Integral((a*(sec(c + d*x) + 1))**(3/2)*(A + B*sec(c + d*x))/sec(c + d*x)**(3/2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c))/sec(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*(a*sec(d*x + c) + a)^(3/2)/sec(d*x + c)^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + B/cos(c + d*x))*(a + a/cos(c + d*x))^(3/2))/(1/cos(c + d*x))^(3/2),x)

[Out]

int(((A + B/cos(c + d*x))*(a + a/cos(c + d*x))^(3/2))/(1/cos(c + d*x))^(3/2), x)

________________________________________________________________________________________